Capillary Flow Solder Wettability Test*
نویسندگان
چکیده
منابع مشابه
Capillary flow-driven microfluidic device with wettability gradient and sedimentation effects for blood plasma separation
We report a capillary flow-driven microfluidic device for blood-plasma separation that comprises a cylindrical well between a pair of bottom and top channels. Exposure of the well to oxygen-plasma creates wettability gradient on its inner surface with its ends hydrophilic and middle portion hydrophobic. Due to capillary action, sample blood self-infuses into bottom channel and rises up the well...
متن کاملAnomalous capillary filling and wettability reversal in nanochannels.
This work revisits capillary filling dynamics in the regime of nanometric to subnanometric channels. Using molecular dynamics simulations of water in carbon nanotubes, we show that for tube radii below one nanometer, both the filling velocity and the Jurin rise vary nonmonotonically with the tube radius. Strikingly, with fixed chemical surface properties, this leads to confinement-induced rever...
متن کاملWettability effect on nanoconfined water flow.
Understanding and controlling the flow of water confined in nanopores has tremendous implications in theoretical studies and industrial applications. Here, we propose a simple model for the confined water flow based on the concept of effective slip, which is a linear sum of true slip, depending on a contact angle, and apparent slip, caused by a spatial variation of the confined water viscosity ...
متن کاملPatterning microfluidic device wettability using flow confinement.
We present a simple method to spatially pattern the surface properties of microfluidic devices using flow confinement. Our technique allows surface patterning with micron-scale resolution. To demonstrate its effectiveness, we use it to pattern wettability to form W/O/W and O/W/O double emulsions.
متن کاملWettability control and flow regulation using a nanostructure-embedded surface.
This work addresses the synthesis, integration and characterization of a nanostructure-embedded thermoresponsive surface for flow regulation. In order to create a hierarchic structure which consists of microscale texture and nanoscale sub-texture, hybrid multilayers consisting of poly(allylamine hydrochloride) (PAH), poly(acrylic acid) (PAA) and colloidal silica nanoparticles (average diameter ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Soldering & Surface Mount Technology
سال: 1997
ISSN: 0954-0911
DOI: 10.1108/09540919710777743